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Purpose: To determine whether dynamic and personalized schedules of visual field (VF) testing and intra-
ocular pressure (IOP) measurements result in an improvement in disease progression detection compared with
fixed interval schedules for performing these tests when evaluating patients with open-angle glaucoma (OAG).

Design: Secondary analyses using longitudinal data from 2 randomized controlled trials.
Participants: A total of 571 participants from the Advanced Glaucoma Intervention Study (AGIS) and the

Collaborative Initial Glaucoma Treatment Study (CIGTS).
Methods: Perimetric and tonometric data were obtained for AGIS and CIGTS trial participants and used to

parameterize and validate a Kalman filter model. The Kalman filter updates knowledge about each participant’s
disease dynamics as additional VF tests and IOP measurements are obtained. After incorporating the most recent
VF and IOP measurements, the model forecasts each participant’s disease dynamics into the future and char-
acterizes the forecasting error. To determine personalized schedules for future VF tests and IOP measurements,
we developed an algorithm by combining the Kalman filter for state estimation with the predictive power of lo-
gistic regression to identify OAG progression. The algorithm was compared with 1-, 1.5-, and 2-year fixed interval
schedules of obtaining VF and IOP measurements.

Main Outcome Measures: Length of diagnostic delay in detecting OAG progression, efficiency of detecting
progression, and number of VF and IOP measurements needed to assess for progression.

Results: Participants were followed in the AGIS and CIGTS trials for a mean (standard deviation) of 6.5
(2.8) years. Our forecasting model achieved a 29% increased efficiency in identifying OAG progression
(P<0.0001) and detected OAG progression 57% sooner (reduced diagnostic delay) (P ¼ 0.02) than following a
fixed yearly monitoring schedule, without increasing the number of VF tests and IOP measurements required.
The model performed well for patients with mild and advanced disease. The model performed significantly
more testing of patients who exhibited OAG progression than nonprogressing patients (1.3 vs. 1.0 tests per
year; P<0.0001).

Conclusions: Use of dynamic and personalized testing schedules can enhance the efficiency of OAG
progression detection and reduce diagnostic delay compared with yearly fixed monitoring intervals. If further
validation studies confirm these findings, such algorithms may be able to greatly enhance OAG
management. Ophthalmology 2014;121:1539-1546 ª 2014 by the American Academy of Ophthalmology.

Supplemental material is available at www.aaojournal.org.
When evaluating patients with glaucoma to assess for disease
progression, clinicians must be able to assimilate past and
present information from standard automated perimetry and
other functional tests, intraocular pressure (IOP) measure-
ments, and careful assessments of the optic nerve and retinal
nerve fiber layer to decide whether patients are stable or
exhibit disease progression and require changes in manage-
ment. Complicating such an assessment is the presence of
measurement error and variability in testing performance that
is known to exist for many of these testing modalities. Studies
have shown that the difficulties associated with evaluating
patients with glaucoma to assess for disease progression have
led to undertreatment1,2 and that decision aids, such as risk
calculators,3 are useful supplements to clinician judgment. In
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this article, we present pilot data from a validation study of a
decision aid tool that we hope someday will be able to assist
clinicians with the management of patients with glaucoma.
The tool assimilates data from past and present visual fields
(VFs) and IOP measurements to determine whether a
patient’s disease is stable and helps guide the timing of
when the patient should next be examined to assess for
disease progression.

At the core of this decision aid is a powerful statistical tool
called “Kalman filtering,” which models the motion of a dy-
namic system, forecasting the future trajectory and combining
multiple measurements for optimal noise reduction.4 This
technique is useful for accurately extracting state/position
estimates from multiple noisy data sources. In the 1960s, the
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National Aeronautics and Space Administration used Kalman
filtering to “optimally” guide Apollo missions to the moon.
More recently, there has been interest in applying it to the
management of chronic diseases, such as monitoring glucose
levels in patients with diabetes mellitus5 and prostate-
specific antigen levels in patients with prostate cancer.6 This
approach builds a model that optimizes the timing of future
tests by integrating a population-based understanding of the
natural history of the disease of interest with the individual
patient’s disease dynamics. When applied to glaucoma man-
agement, the model can be used to forecast future perimetric
and tonometric measurements for individual patients. Unlike
traditional approaches that identify glaucoma progression by
comparing test results with a normative database, this
approach generates personalized information on the disease
state for each patient and forecasts how that state changes over
time. By applying this to glaucoma management, it can be
used to predict future values of the “positions” and respective
velocities and accelerations of VF global indices, such asmean
deviation (MD), pattern standard deviation (PSD), visual
functional index, and IOP levels. One would expect these
estimates to have increased accuracy over raw observations
because the Kalman filter can optimally correct for measure-
ment noise in the forecasts.

The purpose of this study is to determine whether the use
of Kalman filtering to obtain personalized monitoring
schedules of VF testing and IOP measurements for patients
with open-angle glaucoma (OAG) results in an improve-
ment in disease progression detection compared with 1-,
1.5-, and 2-year fixed interval schedules for performing
these tests. By using longitudinal data from 2 randomized
controlled trials of patients with OAG, we developed,
parameterized, validated, and tested an algorithm that
can determine whether each patient with OAG is stable
or experiencing disease progression. The algorithm also
dynamically determines the optimal time to perform the next
test to monitor for OAG progression on the basis of infor-
mation from the population that is integrated with past test
results from the individual patient.
Methods

Data Sources

Data from 2 large, multicenter, randomized, controlled clinical
trials, the Collaborative Initial Glaucoma Treatment Study (CIGTS)
and Advanced Glaucoma Intervention Study (AGIS), were used for
parameterization and validation of a Kalman filter and scheduling
algorithm. These clinical trials were chosen because they included
multiple measurements of IOP (by Goldmann applanation tonom-
etry) and VF results (using a Humphrey Field Analyzer; Carl Zeiss
Meditec, Dublin, CA) for patients with mild to advanced OAG
over a period of up to 11 years and because they had highly
structured follow-up examination regimens, with perimetry and
tonometry performed every 6 months throughout the trials. In the
CIGTS, 607 adults with newly diagnosed, early to moderate OAG
were randomized to trabeculectomy or medical therapy and fol-
lowed for up to 11 years to assess for disease progression.7,8 In the
AGIS, 591 adults with advanced OAG were randomized to treat-
ment with argon laser trabeculoplasty or trabeculectomy and fol-
lowed for at least 5 years to check for OAG progression.9 The
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information contained in both the CIGTS and AGIS datasets was
de-identified before we accessed it, and the University of Michi-
gan Institutional Review Board determined that this study was
exempt from requiring its approval.

Inclusion and Exclusion Criteria

To be included in our study, individuals from the 2 trials were
required to have �4 examinations with VF and IOP readings. From
both trials, we included only those participants who were treated
with medical therapy or laser trabeculoplasty. Because incisional
intraocular surgery can abruptly change glaucoma progression dy-
namics, we opted in this pilot study not to include data from those
who were randomized to initial treatment with trabeculectomy, and
those who underwent trabeculectomy during the course of either trial
were censored at the time of their first trabeculectomy.

Data Elements

For each trial participant, we gathered demographic information on
their age, sex, and race along with information on the IOP and VF
performance at each visit. From every VF test performed on each
patient throughout the trial, we extracted the MD and PSD values.
By assessing global indices from serial VFs from the same patient
over time, we calculated rates of change (i.e., velocity and accel-
eration) for MD and PSD. Velocity was computed per month, and
acceleration was computed as the difference of the velocities from
one period to the next period. We also calculated velocity and
acceleration for IOP in a similar manner for each participant.

To validate and test our methodology, we divided the study’s
CIGTS and AGIS trial data equally into a training set (for
parameterizing models) and testing set (for validating and testing
the models). We randomly assigned CIGTS/AGIS participants to
these sets to ensure equal representation of both groups in the
training and testing sets. We performed this randomization process
25 times and calibrated the Kalman filter for each randomization.
The prediction error of the Kalman filter was consistently unbiased
across the randomizations. We present the numeric results of one of
these randomizations.

Probability of Progression

Progression Criterion. We characterized a participant in the dataset
as exhibiting progression at a particular visit if he or she experienced a
loss of MD of at least 3 decibels from their baseline MD and this loss
was confirmed on a subsequent VF test.8 Because there is presently no
gold standard for identifying progression on perimetric testing, we
compared our progression definition with other progression
measures, such as pointwise linear regression10 and changes in
HodappeAndersoneParrish (HAP) classification11 (e.g., change
from a HAP classification of moderate to a HAP classification of
severe) and found strong similarities in progression identification
(data not shown), suggesting robustness of the definition of
progression we chose to use. Other progression definitions could
easily be incorporated into the algorithm, contingent on the
availability of all of the necessary data elements.

Logistic Regression

We developed a probability of progression function using gener-
alized estimating equations with a logit link function and
exchangeable correlation structure using the training data as inputs.
This binary logistic regression approach accounted for noise in VF
and IOP measurements and allowed us to assess the likelihood of a
patient experiencing OAG progression at a particular visit given
the patient’s specific characteristics (sex, age, race, baseline MD,
present MD, MD velocity, MD acceleration, baseline PSD, present



Figure 1. The time to next test algorithm flow diagram. The Kalman filter
estimates the current visual field (VF) (i.e., mean deviation and pattern
standard deviation) and intraocular pressure (IOP) measurements and
predicts their future values, whereas the logistic regression estimates the
highest probability of progression for those future values. OAG ¼ open-
angle glaucoma.
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PSD, PSD velocity, PSD acceleration, baseline IOP, present IOP,
IOP velocity, and IOP acceleration) at the time of that visit.
Backward variable selection was used to obtain the final set of
predictive covariates for the logistic regression. The variables that
were included in the final logistic regression model were age,
present MD, MD velocity, MD acceleration, present PSD, and
baseline PSD.

The Kalman Filter Approach (Time to Next Test
Algorithm)

The time to next test (TNT) algorithm steps are illustrated in
Figure 1. Key to the Kalman filter approach is its ability to
incorporate the new test information with the data from all of the
patient’s prior tests and the progression dynamics of the
population. The algorithm requires a warm-up period of �3 VF/
IOP tests to calculate velocities and accelerations for MD, PSD,
and IOP. Because the data from the AGIS and CIGTS trials were
systematically collected every 6 months, it took a total of three
6-month periods (or 18 months) before the glaucoma decision aid
could begin forecasting. Had the data from AGIS and CIGTS been
collected at shorter time intervals between tests (e.g., every 3
months), the tool could begin forecasting sooner than a warm-up
period of 18 months.

Once these are determined, the algorithm uses information about
the underlying population and the particular patient’s test results to
estimate the patient’s true MD, IOP, and PSD and respective ve-
locities and accelerations of these parameters. When the algorithm
receives new test measurements, the MD, PSD, IOP, and respective
velocities and accelerations are updated using the Kalman filter,
which is then used to forecast the patient’s mean values of MD,
PSD, IOP, and respective velocities and accelerations for future time
periods. The Kalman filter also provides an estimate of the vari-
ability of the forecasts with designated confidence intervals (CIs).

Figure 2 provides a graphic representation of how the progression
threshold determines the time of the next test. The progression
threshold (illustrated by the plane) separates the Kalman filter
space into 2 regions: progression and nonprogression. This
separation is performed by applying the logistic regression
function to every point in the space. Those points with a calculated
probability of progression less than the progression threshold are
situated in the nonprogression region (to the left of the plane in
Fig 2). Likewise, those points with a calculated probability of
progression greater than or equal to the progression threshold
are situated in the progression region (to the right of the plane in
Fig 2).

In the execution of the TNT algorithm, we use the Kalman
filter’s estimation of the mean and covariance of MD, PSD, IOP,
and the respective velocities and accelerations to generate a con-
fidence region (illustrated by the ellipsoid). For this confidence
region, we compute the highest probability of progression using the
logistic regression function. Once the highest probability of pro-
gression for the confidence region exceeds the progression
threshold (i.e., at least one of the points of the confidence region
falls into the progression region), the TNT algorithm suggests
scheduling a VF and IOP test at that time (in this example, time
tþ4).The progression threshold and confidence region size can be
tailored by the clinician to the needs of the individual patient to
more or less aggressively monitor specific patients.

The TNT algorithm was parameterized using an expectation
maximization algorithm. The expectation maximization algorithm
is an iterative process that uses the training data to find the best
estimates for the Kalman filter parameters. Next, using the testing
dataset, we compared the performance of our scheduling algorithm
with 1-, 1.5-, and 2-year fixed interval testing schedules for
performing VFs and IOPs. To assess how well the algorithm
performed relative to the fixed testing intervals, we compared (1)
the average number of examinations (VFs and IOP measurements)
performed per patient per year; (2) the efficiency in testing
(percentage of instances where OAG progression was noted at the
time a VF test and IOP measurement were scheduled); and (3) the
diagnostic delay (average number of months that a patient’s
glaucoma progression went undetected between examinations). We
used asymptotic values for efficiency (e.g., 50% for 1-year fixed)
and diagnostic delay (e.g., 3 months for 1-year fixed) as the
performance measures for fixed interval schedules. This algorithm
was applied to all trial participants in the testing dataset until a visit
was scheduled on or after the date the patient first experienced
glaucoma progression.

Analyses were run using MATLAB version 7.7.0 (The Math-
Works Inc., Natick, MA) and R version 2.12.2 (http://www.
r-project.org/). For all analyses, P<0.05 was considered statisti-
cally significant.
Results

A total of 571 participants (571 eyes) with OAG met the study
inclusion criteria. Table 1 presents a summary of the participants.
Of these, 266 (47%) came from CIGTS and 305 (53%) came
from AGIS. The mean (standard deviation) age of the study
participants at baseline was 63.2 (10.9) years. The participants
included 272 male subjects (48%) and 299 female subjects
(52%). There were 263 whites (46%) and 288 blacks (50%), and
20 were classified as some other race. Participants were followed
in the trials for an average of 6.3 (2.8) years. The training
dataset included 286 eyes of 286 patients, and the testing dataset
included 285 eyes of 285 patients. There was no statistically
significant difference in the demographic characteristics, number
of visits, or clinical parameters (mean MD, PSD, IOP) between
individuals in the training and testing datasets (P>0.05 for all
comparisons), except there were slightly more blacks in the
training set than the testing set (154 vs. 134; P ¼ 0.05).
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Table 1. Description of Study Sample of Patients from the
Collaborative Initial Glaucoma Treatment Study/Advanced

Glaucoma Intervention Study

Training Testing P
Value*n % n %

No. of eyes 286 285 0.48
No. of participants 286 285 0.48
No. from CIGTS 131 46 135 47 0.64
No. from AGIS 155 54 150 53 0.34
Sex
Male 135 47 137 48 0.57
Female 151 53 148 52 0.40

Race
White 123 43 140 49 0.93
Black 154 54 134 47 0.05
Other 9 3 11 4 0.74

Total no. of visits 3158 3227 0.89
No. of instances

of progression
163 166 0.59

Mean � SD of visits
per patient

11.0 (5.0) 11.3 (5.3) 0.4

Mean � SD age (yrs) 64.2 (10.9) 64.3 (11.0) 0.8
Kalman filter variables
Initial MD �7.55 (3.74) �7.65 (3.73) 0.91
Initial PSD 6.49 (3.39) 6.41 (3.83) 0.54
Initial IOP 17.61 (0.22) 17.7 (0.18) 0.28
MD �8.30 (2.04) �8.27 (1.95) 0.96
MD velocity �0.04 (0.21) �0.03 (0.20) 0.23
MD acceleration �0.01 (0.28) �0.02 (0.26) 0.65
PSD 6.58 (1.18) 6.70 (1.13) 0.69
PSD velocity 0.01 (0.13) 0.01 (0.12) 0.74
PSD acceleration 0 (0.19) 0.01 (0.17) 0.50
IOP 17.43 (2.64) 17.14 (2.63) 0.23
IOP velocity 0.00 (0.29) 0 (0.31) 0.67
IOP acceleration 0 (0.42) 0.01 (0.41) 0.62

AGIS ¼ Advanced Glaucoma Intervention Study; CIGTS ¼ Collabora-
tive Initial Glaucoma Treatment Study; IOP ¼ intraocular pressure; MD ¼
mean deviation; PSD ¼ pattern standard deviation; SD ¼ standard
deviation.
*P values are calculated for the null hypothesis of equal proportion in
testing and training set for categorical variables and the null hypothesis of
equal means for continuous variables.

Table 2. Factors in Multivariable Logistic Regression Associated
with Open-Angle Glaucoma Progression

Covariate Coefficient Standard Error P Value

Intercept �6.004 0.723 <0.001
MD (dB) �0.057 0.017 0.001
MD velocity (dB/mo) �4.054 0.666 <0.001
MD acceleration (dB/6 mo2) �1.183 0.326 <0.001
Baseline PSD (dB) �0.162 0.078 0.039
PSD (dB) 0.154 0.075 0.039
Age (yrs) 0.026 0.103 0.013

dB ¼ decibels; MD ¼ mean deviation; PSD ¼ pattern standard deviation.
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Logistic Regression

Table 2 presents the coefficients, standard errors, and P values of
the covariates incorporated into the logistic regression, which we
then used to assess the probability of OAG progression for each
patient. As expected, patients with more advanced glaucoma as
captured on perimetry (a more negative MD or a more
positive PSD) had a higher probability of progression
compared with those with less advanced disease. In the
regression model, each of the covariates in Table 2 was found
to be significantly associated with OAG progression (P<0.04
for each covariate).

Validation of Kalman Filter

To validate the fit and predictive ability of the Kalman filter for
assessing OAG progression, we calculated the 95% CIs for the
mean prediction errors of MD, PSD, and IOP and their respective
velocities and accelerations across all study participants in the
testing dataset. Errors were calculated at various prediction lengths
(6 months, 2 years, and 5 years into the future). Table 3 (available
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at www.aaojournal.org) shows that the mean differences between
the Kalman filter predictions and the observed values from the
trials were close to zero across various prediction lengths
(a ¼ 0.05), supporting the accuracy of the Kalman filter
predictions.

Next, we compared the observed values of MD from each
clinical trial participant in the testing dataset with the filtered and
predicted values of MD generated by the Kalman filter. The
Kalman filter forecasts one period ahead and updates the forecasts
with the clinical observation for that period to obtain the filtered
estimate of MD at each sequential trial visit. Predicted MD values
are those obtained from the Kalman filter without incorporating
future clinical observations. To illustrate the Kalman filter’s
forecasting ability (Fig 3), we present 4 study participants, 2 of
whom exhibited OAG progression and 2 of whom experienced
no progression during their enrollment in one of the clinical
trials. We also estimated 90% CIs for the predicted values
toward the end of each participant’s enrollment in the clinical
trial. We chose the narrower 90% CIs for the predicted values
to demonstrate how strong the predictive power of the Kalman
filter actually is. Because all observations fell well within the
90% CIs, the observations would also fall within the wider 95%
CIs. We found that at all future time points, the Kalman filter
forecasts for MD were close to the observed MD values
obtained when the participant took the test during the clinical
trial; our CIs for predicted MD fully encompassed the observed
MD values, even 3.5 years into the future. Similar analyses
were performed on all patients in the testing set for PSD and
IOP. Figure 4 (available at www.aaojournal.org) shows an
example of how the algorithm forecasts future PSD and IOP
measurements.

The Kalman filter assumes the process and measurement
noise are normally distributed. We have examined the errors
and found that normality holds within 2 standard deviations of
the mean for all of the Kalman filter variables (MD, PSD, IOP,
and their respective velocities and accelerations) (data not
shown).

Kalman Filter Versus Fixed Testing Intervals to
Identify Open-Angle Glaucoma Progression

After calibrating the TNT algorithm, we evaluated the algorithm
with fixed testing intervals of 1, 1.5, and 2 years. Our evaluation
involved assessing the (1) number of tests, (2) efficiency, and (3)
diagnostic delay. Figure 5 compares the average efficiency and
diagnostic delay of the TNT algorithm and 1-, 1.5-, and 2-year
fixed testing intervals. For the same average number of tests as
the 1-, 1.5-, and 2-year fixed testing intervals, the TNT algorithm
achieved higher efficiency (P<0.0001 for all comparisons) and

www.aaojournal.org
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Figure 2. The time to next test (TNT) algorithm. The Kalman filter es-
timates the mean values of mean deviation (MD), pattern standard devi-
ation (PSD), intraocular pressure (IOP), and their respective velocities and
accelerations at future periods, along with estimates of the covariance of
these measurements. This generates a confidence region of possible future
values that are used as inputs for the logistic regression function to deter-
mine the highest probability of progression. Once the highest probability of
progression at a future visit exceeds the progression threshold, the TNT
algorithm schedules a visual field and IOP test. t ¼ time period.
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reduced diagnostic delay (P ¼ 0.02, P<0.0001, and P<0.0001,
respectively) for detecting OAG progression. For example, when
comparing the 1-year fixed testing interval with the TNT algorithm,
for the same average number of tests (4.7 tests), the TNT algorithm
Figure 3. Kalman filter trajectories of mean deviation (MD). The figures illustr
requires 3 visits to calculate initial values of velocity and acceleration for MD. S
MD. The Kalman filter forecasts one period ahead and updates the forecasts wi
MD. The graphs show the similarity of the observed values and the filtered estima
the 90% confidence interval (CI) for the Kalman filter’s predicted values of MD
incorporating future clinical observations. Every clinical observation is containe
CIGTS ¼ Collaborative Initial Glaucoma Treatment Study.
increased efficiency by 29% and reduced diagnostic delay at OAG
progression detection by 1.7 months.

Table 4 shows how the algorithm performed in the subset
of participants enrolled in both trials who experienced OAG
progression compared with those who never experienced glaucoma
progression. Overall, 116 trial participants in the testing dataset
were noted to have OAG progression and 169 participants did
not exhibit progression. Among those in the testing dataset
who progressed, the mean (standard deviation) time from study
enrollment to the first record of OAG progression was 45.7 (23.4)
months. Because efficiency and diagnostic delay assess the
algorithm’s ability to schedule follow-up tests at times when there
was evidence of actual OAG progression, these performance mea-
sures were not applicable for the subset of participants who did not
exhibit disease progression. The algorithm scheduled more tests per
year for patients who were exhibiting OAG progression (1.3 tests per
year) than others who were stable (1.0 test per year) (P<0.0001).

Table 4 also shows how the TNT algorithm performed on
CIGTS patients and AGIS patients in the testing dataset
separately. As one might expect, the TNT algorithm scheduled
more tests for AGIS patients than for CIGTS patients (1.3 vs.
0.9 average tests per year; P<0.0001). The TNT algorithm
achieved marginally improved efficiency (83% vs. 71%; P ¼
0.06) for AGIS patients compared with CIGTS patients, and the
efficiency of OAG progression detection for both groups was
better than the efficiency achieved using 1-year fixed testing
ate the Kalman filter’s ability to accurately forecast MD. The Kalman filter
tarting in period 4, the Kalman filter is used to calculate filtered estimates of
th the clinical observation for that period to obtain the filtered estimate of
tes. For the latter portion of the patients’ enrollment in the trial, we present
. Predicted MD values are those obtained from the Kalman filter without
d within the 90% CIs. AGIS ¼ Advanced Glaucoma Intervention Study;
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Figure 5. Comparison of time to next test (TNT) algorithm and fixed-schedule performance measures. The graph on the left compares the average efficiency
and average number of tests per patient of the TNT algorithm with the 1-, 1.5-, and 2-year fixed interval schedules. The graph shows that the TNT al-
gorithm dominates each fixed-interval schedule in terms of efficiency. The graph on the right compares the average diagnostic delay and average number of
tests per patient of the TNT algorithm with the 1-, 1.5-, and 2-year fixed-interval schedules. The graph shows that the TNT algorithm dominates each fixed-
interval schedule in terms of diagnostic delay.
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intervals (50%). Diagnostic delay at detecting OAG progression
(1.0 vs. 1.9 months; P ¼ 0.09) was slightly shorter for AGIS pa-
tients, although this did not reach statistical significance.

Additional analyses were performed to see how well the TNT
algorithm performed on black versus white patients from the trials.
We found that the TNT algorithm performed more tests on average
for black patients than white patients (5.31 vs. 4.24; P ¼ 0.03). The
TNT algorithm performed equally well in terms of efficiency and
diagnostic delay (P ¼ 0.10 and 0.20, respectively) for black and
white patients.
Table 4. Comparison of Algorithm Performance for Progressing versu
Study versus Collaborative Initial Gla

Performance Measures
1-Year Fixed

Interval Testing
TNT of

All Patients
TNT of Pr

Patie

Average no. of tests per year 1.00 1.12 1.2
Average efficiency (%) 50 79 79
Average diagnostic delay (mos) 3.00 1.29 1.2

AGIS ¼ Advanced Glaucoma Intervention Study; CIGTS ¼ Collaborative
N/A ¼ not applicable.
Progressing patients are those who met our definition of progression (loss of 3
enrollment in the clinical trial. Nonprogressing patients are those who never me
is the percentage of instances where open-angle glaucoma progression was noted
that a patient’s glaucoma progression went undetected between examinations.
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Discussion

By using a forecasting technique called Kalman filtering, we
parameterized an algorithm that dynamically updates the
timing of future measurements for each individual on the
basis of prior measurements. The Kalman filter starts with
information about the population, and as patient observa-
tions are obtained, the Kalman filter incorporates these data
to learn about each individual’s specific progression
s Nonprogressing Patients and Advanced Glaucoma Intervention
ucoma Treatment Study Patients

ogressing
nts

TNT of
Nonprogressing Patients

TNT of
AGIS Patients

TNT of
CIGTS Patients

8 1.02 1.30 0.92
N/A 83 71

9 N/A 1.02 1.92

Initial Glaucoma Treatment Study; TNT ¼ time to next test algorithm;

decibels mean deviation [MD] from baseline) at least once during their
t the definition of progression during their time in AGIS/CIGTS. Efficiency
at the time a test was scheduled. Diagnostic delay is the number of months
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dynamics. Our algorithm was validated using longitudinal
data from 2 large, multicenter clinical trials of patients with
mild to advanced OAG. By comparing the output generated
from the algorithm with fixed testing intervals of 1, 1.5, and
2 years, we show that the algorithm is capable of detecting
OAG progression more efficiently and with reduced diag-
nostic delay compared with fixed interval schedules, without
the need for additional tests. The model seems to work well
for those with mild to moderate OAG (participants in
CIGTS) and those with more advanced disease (participants
in AGIS), performs well for the subset of trial participants
who did and did not exhibit OAG progression, and forecasts
well for white and black trial participants.

Although we are unaware of other personalized algorithms
that use a Kalman filter to determine the frequency of testing
of patients with OAG or other ophthalmological diseases, this
approach is being applied in other medical specialties to aid
clinicians in clinical decision making for patients with chronic
diseases. Examples include estimation of pulmonary blood
flow12 and prediction of arterial blood pressure.13 This
approach lends itself well to progressive conditions that
involve repeated testing using quantitative data.

There are several advantages to using this approach to aid
in evaluating and monitoring of patients with OAG, rather
than simply testing all patients at fixed intervals or relying
on one’s gestalt of how often to monitor a given patient. By
incorporating data from a population of patients with OAG,
the Kalman filter is able to identify and filter out systematic
noise (e.g., measurement error, variability in test perfor-
mance) that is known to exist in IOP readings and VF test
results. Second, the Kalman filter makes use of data from
sequential visits to account for the disease dynamics of each
individual patient and continually updates the model with
new test results after each visit to determine the timing of
future testing. Third, the algorithm is scalable and
can include additional data from structural tests, such as
optical coherence tomography or confocal scanning laser
ophthalmoscopy, as well as other quantifiable data elements.
Fourth, because there is presently no consensus on the
optimal approach to define OAG progression, the model is
flexible enough to be able to make predictions of progres-
sion using different definitions. Finally, the algorithm can be
tailored by the eye care provider to be more or less
aggressive in testing for disease progression. For example,
the algorithm can be modified so that a clinician can choose
to increase the threshold for detecting OAG progression for
an 85-year-old patient with early OAG who has multiple
medical comorbidities, if the clinician thinks this patient is
unlikely to go blind from the disease, so as to not over-
burden such a patient with frequent tests. Alternatively, for a
40-year-old monocular patient with severe OAG, the clini-
cian might opt to lower the threshold so that the algorithm
can identify the first hint of possible disease progression.
From a societal perspective, the use of Kalman filter fore-
casting can improve the quality of care offered to patients by
aiding in more timely identification of those who are
exhibiting OAG progression and require additional treat-
ment while simultaneously limiting patient burden and
added costs of performing unnecessary testing.
Study Limitations

First, the types of parameters that we were able to incor-
porate into the Kalman filter we developed were limited to
those that were measured in the CIGTS and AGIS studies.
Information that we would have liked to include in the al-
gorithm but was not available from those trials includes
pachymetry readings, optical coherence tomography mea-
surements, and other quantifiable measures of the optic
nerve or retinal nerve fiber layer. In the future, we hope to
obtain access to datasets that longitudinally capture infor-
mation on these parameters so we can refine our algorithm,
which should enhance its ability to identify people who are
at increased risk of OAG progression. Second, we have yet
to test this algorithm on other groups of patients, such as
those with ocular hypertension, early preperimetric glau-
coma, or other forms of glaucoma, and those who under-
went incisional glaucoma surgery. Further validation is
necessary to determine how well the algorithm predicts
disease progression and need for monitoring in these groups.
Third, the timing of the follow-up examinations in the AGIS
and CIGTS restricted our algorithm’s scheduling decisions
to no more frequently than every 6 months. If follow-up
examination data for smaller time windows (e.g., every 1
month) were available, our algorithm could make sched-
uling decisions as often as every month. As we shorten the
time interval allowed in scheduling (e.g., 6 months to 1
month), we expect the algorithm to achieve higher effi-
ciency and lower diagnostic delay. In particular, this would
allow for large gains in the improvement of our TNT al-
gorithm for diagnostic delay. The exact gains cannot be
known until we have tested our TNT algorithm on data
collected at a higher frequency of every 1 or 3 months. Last,
patient adherence to prescribed medications is likely higher
for participants in the AGIS and CIGTS compared with
those routinely cared for in clinical practice. When applied
to patients seen in clinical practice, the increased IOP
variability due to lower medication adherence would likely
decrease the predictive capability of the Kalman filter. When
we further validate the model using another sample of pa-
tients who were not enrolled in a clinical trial, we will be
able to explore this further.

There are also algorithm limitations to mention. First, the
Kalman filter assumes glaucoma evolves linearly over time.
To address potential nonlinear evolution, we modeled the
velocity and acceleration of MD, PSD, and IOP in the
Kalman filter. Second, our approach requires a 3-period
warm-up so that we can calculate velocity and accelera-
tion. This warm-up delays when the algorithm can begin
predicting the optimal timing of the next test. However,
outside of a clinical trial setting (in clinical practice), these 3
measurements could be acquired more quickly than every 6
months so the model does not require 18 months before it
begins generating forecasts.

In conclusion, we have developed, parameterized, and
validated an algorithm that forecasts the probability of OAG
progression using a filtered forecasting technique and helps
identify the optimal timing to perform additional testing for
patients with mild to advanced OAG. With each additional
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set of measurements obtained, the algorithm updates its
predictions so that it generates a personalized assessment of
each patient’s risk of progression and the timing of addi-
tional testing. The algorithm is scalable and gives clinicians
the ability to input how aggressively they want to manage a
given patient. When the algorithm was tested in a group of
patients from the CIGTS and AGIS trials, it performed
considerably better than 1-, 1.5-, and 2-year fixed-interval
testing schedules. With further refinement of this algorithm
and after additional validation studies are performed using
patients with other forms of glaucoma, we hope that such an
algorithm will soon be accessible in a user-friendly format
to enhance the ability of clinicians to effectively care for
patients with OAG.
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